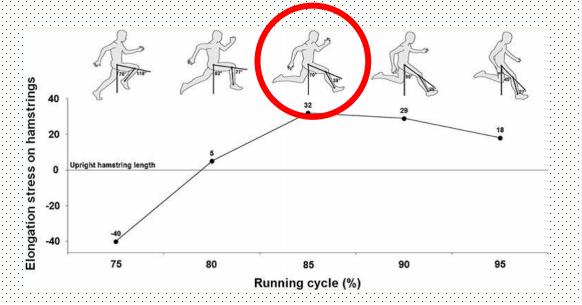
Rehabilitation of Hamstring Strain Injuries: An Evidence-Based Approach

Mariellen Mardis

Rehabilitation Roadmap

Evidence-Based
Exercise
Recommendations

Running and Sport-Specific Progressions



Hamstring Injury Mechanism

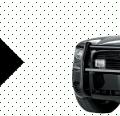
High force through muscletendon unit Muscle-tendon unit lengthening beyond moderate length

High velocity movement

Hamstring Strain Injury

Evidence-Based Exercise Interventions

- Early and Optimal loading
- Hamstring Lengthening Exercises
- Eccentric Hamstring Strengthening
- Hip Extensor Strengthening
- Progressive Agility and Trunk Stability


Protection

Rest

Ce

Compression

Elevation

Protection

Optimal

Loading

Ice

Compression

Elevation

<u>Optimal Loading</u> - "the load applied to structures that maximizes physiological adaptation and restores function via various cellular and neural mechanisms"

Bayer et. al (2017)

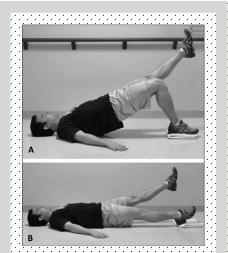
- Early therapy (2 days post-injury) vs. delayed therapy (9 days post-injury)
- Early therapy shortened return to sport by 3 weeks with no significant increased risk of reinjury

Hamstring Lengthening Exercises

Askling L Protocol

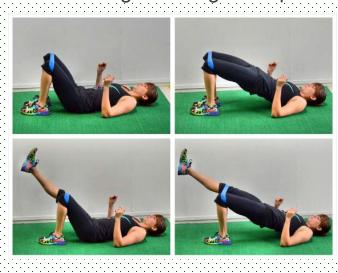
Askling C Protocol

- Two RCTs assessed L-Protocol vs. C-Protocol in addition to general rehabilitation protocol
- Both trials showed shortened return to sport in L-Protocol groups



- Strong recommendation for inclusion of eccentric strengthening exercises in HSI rehabilitation protocol
 - Higher intensity loading compared to Askling Lprotocol
 - Decreases deficits in strength during a lengthened state
 - Decreases risk of re-injury
- Can be utilized safely during early rehabilitation stage
 - Ex: bilateral eccentric slide outs

Hip Extensor Strengthening

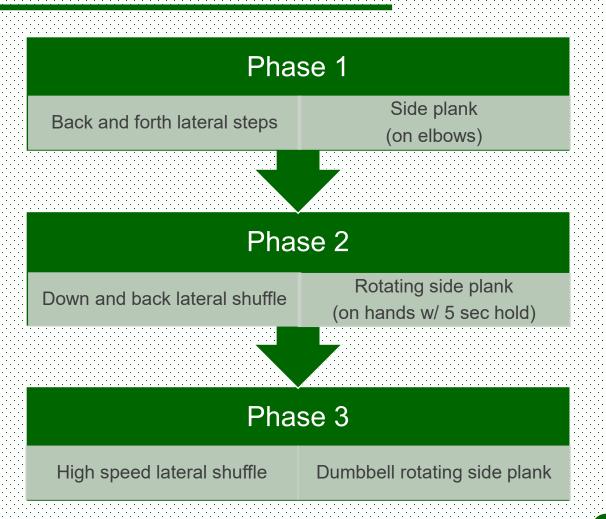

Hamstring as Hip Extensor

- Strong recommendation for hip extension exercises at longer muscle lengths
- Multi-joint muscle requires strengthening at both the knee and hip
 - Ex: Askling Diver or Bilateral 45-degree hip Extension

Single-Joint Hip Extensor

- Recommendation to strengthen gluteus maximus, adductor magnus, gluteus medius
- Important during force production while running
 - Target using greater knee flexion angles in hip extension
 - Ex: Bilateral glute bridge or hip thrust

Progressive Agility and Trunk Stability (PATS)


Inclusion of agility and trunk stability exercises to improve neuromuscular control of lumbopelvic region to create optimal function of hamstrings in sprinting and high-speed movements

RCT 1 - compared static stretching with strengthening vs. PATS

No difference in time require to RTS, but decreased risk of reinjury in PATS group

RCT 2 - compared progressive running with eccentric strengthening vs. PATS

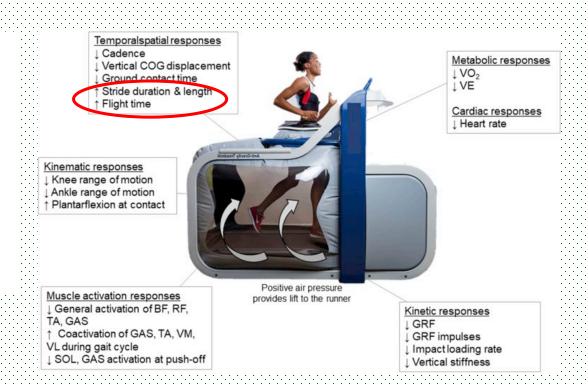
No difference in time required to RTS or re-injury risk

Running and Sport-Specific Progression

- Aquatic Rehabilitation
- Body Weight Support Treadmill
- Running Progressions
- Sport-Specific Drills

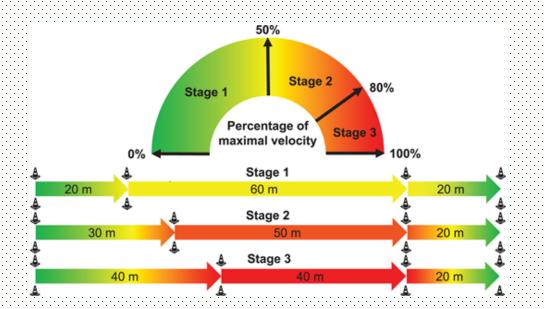
Aquatic Rehabilitation

- Can be utilized to initiate closed and open-chain exercises, plyometrics, running and position specific drills at reduced body weight
 - EMG activation study showed lower peak muscle activity in water walking
 - Progress exercises, running speed, jet resistance to determine readiness to progress to land-based drills
- May be useful in maintaining cardiovascular fitness
 - Water resistance and arm movement contributed to higher cardiorespiratory response compared to land walking at same speed



Body Weight Support Treadmill

- Decreases load on joints and soft tissue while preserving aerobic fitness and muscle activation
 - Allows manipulation of bodyweight and incline Increase in stride length and flight time should be noted
- Higher than normal speeds required to induce similar physiological effects before returning to land



Running Progressions

- Goals of running program:
 - Accelerate
 - Maintain constant speed
 - Decelerate
 - Avoid large spikes in high-speed running
- Intensity measured from patient reported RPE at percentage of max speed or GPS data

	Acceleration Distance (meters)	Constant Speed Distance (75% max speed)	Deceleration Distance (meters)
Level 1	40	20	40
Level 2	35	20	35
Level 3	25	20	25
Level 4	20	20	20
Level 5	15	20	15
Level 6	10	20	10
	Acceleration Distance (meters)	Constant Speed Distance (90% max speed)	Deceleration Distance (meters)
Level 7	Acceleration Distance	Constant Speed Distance (90% max	Deceleration Distance
Level 7 Level 8	Acceleration Distance (meters)	Constant Speed Distance (90% max speed)	Deceleration Distance (meters)
	Acceleration Distance (meters)	Constant Speed Distance (90% max speed)	Deceleration Distance (meters)
Level 8	Acceleration Distance (meters) 40 35	Constant Speed Distance (90% max speed) 20 20	Deceleration Distance (meters) 40 35
Level 8 Level 9	Acceleration Distance (meters) 40 35 25	Constant Speed Distance (90% max speed) 20 20 20	Deceleration Distance (meters) 40 35 25

Sport-Specific Drills

- Lack of specific rehabilitation protocol consensus in research
- Total volume and distance high-speed running exposure should be similar to the demands of the sport
 - Avoids a high spike with RTS
 - Ensure readiness
- Incorporate change of direction and position-specific drills
 - Contact drills if necessary

THANKYOU!

References

- Schmitt, Brandon, et al. "Hamstring Injury Rehabilitation and Prevention of Reinjury Using Lengthened State Eccentric
 Training: A New Concept." International Journal of Sports Physical Therapy, vol. 7, no. 3, 2012, pp. 333–41.
- Bayer, Monika L., et al. "Early versus Delayed Rehabilitation after Acute Muscle Injury." New England Journal of Medicine,
 vol. 377, no. 13, 28 Sept. 2017, pp. 1300–1301.
- Askling, Carl M, et al. "Acute Hamstring Injuries in Swedish Elite Football: A Prospective Randomised Controlled Clinical Trial Comparing Two Rehabilitation Protocols." British Journal of Sports Medicine, vol. 47, no. 15, 27.
- Hickey, Jack T, et al. "Criteria for Progressing Rehabilitation and Determining Return-To-Play Clearance Following
 Hamstring Strain Injury: A Systematic Review." Sports Medicine (Auckland, N.Z.), vol. 47, no. 7, 2017, pp. 1375–1387.
- Hickey, Jack T., et al. "Current Clinical Concepts: Hamstring Strain Injury Rehabilitation." Journal of Athletic Training, vol.
 57, no. 2, 15 June 2021.
- Wangensteen, Arnlaug, et al. "Rehabilitation of Hamstring Injuries." Prevention and Rehabilitation of Hamstring Injuries,
 2020, pp. 225–270.
- Lambert, Brad S., et al. "Anabolic Responses to Acute and Chronic Resistance Exercise Are Enhanced When Combined with Aquatic Treadmill Exercise." American Journal of Physiology-Endocrinology and Metabolism, vol. 308, no. 3, 1 Feb. 2015, pp. E192–E200.
- Vincent, Heather K., et al. "Role of Antigravity Training in Rehabilitation and Return to Sport after Running Injuries." Arthroscopy, Sports Medicine, and Rehabilitation, vol. 4, no. 1, Jan. 2022, pp. e141–e149.